NATR 142 Plane Surveying

 Fall 2023
Third Examination Study Guide

Prepared By: Dr. Walid H. Shayya

- Understand how to work with map (plan) scale in its different forms and how to use scale in both location and layout surveys.
- Understand what is unique about topographic maps and how to interpret them.
- Know what contour lines correspond to and how these provide an idea of topography.
- Understand how to read contour lines.
- Use trigonometric functions whenever needed.
- Define trigonometric leveling and when it is used.
- Understand the steps involved in trigonometric leveling.
- Understand stadia principles and how to make distance measurements using stadia lines, both with a level or inclined telescope.
- Know the terms hi, HI, RR, and RI (RI=TW-BW) as well as how these are used in calculating distances and elevations based on stadia measurements.
- Know how to solve problems involving stadia measurements and trigonometric leveling.
- Define GPS and know what does it stand for.
- Know the three segments of GPS and how these function.
- Know how a GPS receiver determines its position.
- Know the key to measuring distances from satellites using GPS.
- Understand how can GPS be applied in surveying.
- Discuss the use of EDM and total stations.
- Understand the difference among electronic theodolites and total stations.
- Understand the use of EDM instruments with reflectorless technology.
- Find horizontal angles when given a list of data from a repeating theodolite.
- Know how to work with vertical angles and how these are referenced in transits, theodolites, and total stations (horizontal, zenith, and nadir).
- Know how to work with closed and open traverses.
- Discuss the methods for measuring angles or directions in traverse surveys.
- Know why, when, and how deflection angles are measured.
- Know and be able to use formulas for the sum of interior angles [i.e., (n-2)*180 ${ }^{\circ}$].
- Define the difference between true and magnetic north.
- Understand magnetic declination and how it changes.
- Establish a direction of a line if given a bearing.
- Establish a direction of a line if given an azimuth.
- Convert among bearings, reverse bearings, azimuths, and reverse azimuths.
- Compute the bearings and/or azimuths for all lines in a traverse (open or closed) given pertinent angles and distances of the lines and the direction of one of the lines.
- Understand how to adjust interior angles for a closed traverse.
- Calculate latitudes and departures of lines.
- Calculate rectangular coordinates of the vertices of a traverse given latitudes and departures.

NAIR 142
 Plane Surveying

Instructor: Dr. Walid Shayya

Third Examination

Equations Sheet

$$
\begin{aligned}
& 1 \mathrm{ch}=100 \text { links }=66 \mathrm{ft}=4 \text { rods } \\
& 1^{\circ}=60 \text { '; } 1^{\prime}=60 " ; 1^{\circ}=3600 " \\
& 1 \mathrm{yd}=3 \mathrm{ft} \\
& 1 \mathrm{~m}=3.2808 \mathrm{ft} \\
& \sin \theta=\frac{\text { opposite }}{\text { hypotenuse }} \\
& \tan \theta=\frac{\text { opposite }}{\text { adjacent }} \\
& \text { Grade }=\tan \theta=\frac{\text { rise }}{\text { run }}=\frac{\text { opposite }}{\text { adjacent }} \\
& \Sigma \text { of angles }=(n-2) \cdot 180^{\circ} \\
& S=(T W-B W) \cdot 100 \cdot \cos \theta \\
& H=S . \cos \theta \\
& \text { Elev. }_{B}=H I \pm V-R R_{B} \\
& \text { Lat. }_{A B}=A B \cdot \cos \left(\text { Bog. }_{A B}\right) \\
& Y_{B}=Y_{A}+\text { Lat. }_{A B} \\
& 1 \mathrm{mi}=5280 \mathrm{ft}=1.609 \mathrm{~km} \\
& 1 \mathrm{ac}=43,560 \mathrm{ft}^{2} \\
& 1 \mathrm{ft}=12 \mathrm{in} \\
& \cos \theta=\frac{\text { adjacent }}{\text { hypotenuse }} \\
& \text { hypotenuse }^{2}=\text { opposite }^{2}+\text { adjacent }^{2} \\
& \operatorname{Dep}_{\cdot A B}=A B \cdot \sin \left(\operatorname{Brg}_{\cdot} \cdot A B\right) \\
& X_{B}=X_{A}+D e p \cdot A B
\end{aligned}
$$

